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In this formulation the real-space wave function yn(x) is convolved by a real-
space propagator p

n+1
(x) and the result multiplied by the real-space phase-grating.  Van 

Dyck (1983) has developed this method and shown that the convolution step need not 
be carried out with the full 2nx2m p(x) array, but only with a such smaller array (since 
p(x) is sharply peaked in the forward direction for high energy scattering).  Since the 
modified p(x) array is so much smaller, the computation time should take less time than 
either of the reciprocal-space multislice (A1) or the FFT multislice (A2);  however, tests 
(e.g. Kilaas and Gronsky, 1983) have shown that the original formulation of the method 
required more beams and smaller slices to achieve the same precision as either the re-
ciprocal-space multislice  or the FFT multislice, resulting in a longer time to produce 
the wavefield at the same total specimen thickness.  Van Dyck and Coene (1984) have 
since proposed a modified implementation of the real-space multislice into a workable 
algorithm, with results that approach those produced by the multislice formulations of 
equations A1 and A2 (Coene and Van Dyck, 1984).  Since the p(x) array is much small-
er, procedure (A3) does produce some saving in memory over the other multislice for-
mulations.

A.4 Storage requirements

All three formulations of the multislice procedure require the computer (or array 
processor) to store three different complex arrays corresponding to the phasegrating 
function in real or reciprocal space (q(x) or Q(k)), the electron wavefield in real or re-
ciprocal space (y(x) or Y(k)), and the propagator function in real or reciprocal space 
(p(x) or P(k)).  

With a reciprocal-space phasegrating Q(k), of 2nx2m terms, a parameter-(n+m) 
reciprocal-space multislice (equation A1), requires a reciprocal-space wavefield array 
(or set of diffracted beams), Y(k), of 2n-1x2m-1 terms, and a reciprocal-space propaga-
tor array P(k), of  2n-1x2m-1 terms.

An equivalent parameter-(n+m) FFT multislice (equation A2) requires a real-
space phase-grating array q(x), of 2nx2m terms, an electron wavefield array Ψ(k), of 
2nx2m terms, and a reciprocal-space propagator array P(k), of 2n-1x2m-1 terms.

For a real-space parameter-(n+m) multislice (equation A3), both the ψ(x) and 
q(x) arrays need to hold 2nx2m terms, whereas p(x) may be as small as thirteen (Kilaas 
& Gronsky, 1983), giving a total requirement of slightly over 2x2n+m terms.  In imple-
menting the real-space multislice it is important that the 2nx2m q(x) array should be 
formed from a full 2nx2m Q(k) terms, whereas the 2nx2m y(x) array should be formed 
from only 2n-1 x2m-1 Ψ(k) terms in order to include correctly all the physical scattering 
contributions to each diffracted beam and to avoid aliasing problems (fig A1).

 Any (correctly implemented) multislice of size 2nx2m (parameter n+m) thus in-
cludes the effects of only 2n-1x2m-1 diffracted beams.  This is true for all three formula-
tions of the multislice:  the reciprocal-space method (equation A1), the FFT method 
(equation A2), and the real-space multislice (equation A3).
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Appendix BHOLZ interactions

With suitable algorithms, it is possible to include in the diffraction calculation 
the effects of out-of-zone scatterings, or non-zero (or higher-order) Laue zone (HOLZ) 
interactions.  Basically, there are four ways to produce the set of phasegratings (or pro-
jected potentials) that describe the “multisliced” crystal.  For structures with short re-
peat distances in the beam direction, the simplest method is to use one slice per unit cell.  
For structures with large repeats in the beam direction, several methods may be used, 
three of which rely on sub-dividing the slice into “sub-slices”.  Any of the four methods 
can be used in NCEMSS.

B.1 Identical slices with only one sub-slice per unit cell repeat distance

A multislice computation in which every slice is identical contains no informa-
tion about the variation in structure along the incident beam direction, and includes 
scattering interactions with only the zero-order Laue zone (ZOLZ) layers.  For struc-
tures with short repeat distances in the beam direction such a computation is adequate, 
since the Ewald sphere will not approach the (relatively distant) high-order zones.  

B.2 Identical sub-slices with n sub-slices per unit cell repeat distance

For structures with large repeats in the beam direction, a method of sub-dividing 
the slice is required in order to compute the electron scattering with sufficient accuracy.  
The simplest, but most approximate method, is to compute the projected potential for 
the full repeat period then use 1/n of the projected potential to form a phase-grating 
function that can be applied n times to complete the slice.  This method avoids interac-
tion with any “pseudo-upper-layer-line” (Goodman and Moodie, 1974), but ignores real 
HOLZ layers.

B.3 Sub-slices based on atom positions

An improvement on sub-dividing the projected potential is to sub-divide the unit 
cell atom positions.  In this procedure the list of atom positions within the unit cell is 
divided into n groups depending upon the atom position in the incident beam direction.  
From these sub-sliced groups, different projected potentials are produced to form n dif-
ferent phase-gratings, which are applied successively to produce the scattering from the 
full slice.  

B.4 Sub-slices based on the three-dimensional potential

A further improvement on sub-dividing the atom positions, is to sub-divide the 
three-dimensional potential of the full slice, since an atom with a position within one 
sub-slice can have a potential field that extends into the next sub-slice.  Rather than 
compute a full three-dimensional potential and then integrate over appropriate sub-slic-
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es (a 128x128x128 potential would require over two million samples to be stored), it is 
possible to derive an analytical expression for the potential within the sub-slice z0 ± Dz 
projected onto the plane at z0 (Self et al., 1983).  It is possible to apply this method rou-
tinely to structures with large repeats in the beam direction, thus generating several dif-
ferent phase-gratings for successive application, and even to structures (perhaps with 
defects) that are aperiodic in the beam direction and require a large number of individ-
ual non-repeating phase-gratings (Kilaas et al., 1987).  

B.5 NCEMSS sub-slicing

While ensuring that the calculation remains sufficiently accurate, NCEMSS will 
normally choose the simplest (and quickest) method of specifying how slices are de-
fined for any particular combination of specimen, zone axis, accelerating voltage, and 
maximum g.  To this end, the user can choose to neglect HOLZ interactions if these are 
judged to be unimportant.  If HOLZ interactions are important, then the user should se-
lect the “3D-POT.SLICE” box in the SET-UP menu (p 41), rather than the “2D-
POT.SLICE” box.

When a two-dimensional calculation is selected, NCEMSS will use one slice 
per cell if the cell repeat distance in the beam direction is small (B.1).  If the repeat dis-
tance is too large for one slice per unit cell, NCEMSS will avoid pseudo-upper-layer-
lines by producing n identical sub-slices (B.2).

When a three-dimensional calculation is selected, (3D-POT.SLICE activated), 
NCEMSS uses a sub-divided three-dimensional potential (B.4) when the repeat dis-
tance is large, and defaults to one slice per cell if the distance is small enough.  Note 
that the number of sub-slices per unit cell can be forced to be greater than one by setting 
it explicitly in the MAIN menu (p 16); this will ensure that any HOLZ interactions are 
included even for small repeat distances.  Of course, if the repeat distance is very small, 
leading to a distant HOLZ in reciprocal space, both the calculation and the experiment 
it is modeling will interact only very weakly with the HOLZ reflections.  

Use of the LAYERED STRUCTURE option (p 12) to produce the scattering 
from a structure that is layered or aperiodic in the incident beam direction is effectively 
an application of the method of sub-slicing based on atom positions (B.3).  Thus the 
user could create a number of sub-slices by assigning selected atoms to different struc-
ture files, then forming a phasegrating for each sub-slice, and using the SET-LAYERS 
menu (p 46) to specify how the sub-slices are to be used to describe the specimen struc-
ture.  Normally, of course, the use of the B.4 option is to be preferred, as it produces a 
superior result, and is far easier to use.

B.6 Other methods
Van Dyck has proposed other methods to include the effects of HOLZ layers, 

including the second-order multislice with potential eccentricity (Van Dyck, 1980) and 
the improved phase-grating method (Van Dyck, 1983).  Tests of these procedures show 
that the extra computation involved in using potential eccentricity may be worthwhile, 
but that the improved phase-grating method diverges too easily to be useful.
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